
Submission to Genome Biology and Evolution (Letter)

Supplementary Text and Supplementary Figures for
Individual-based modeling of genome evolution in haplodiploid
organisms

Rodrigo Pracana1*§, Richard Burns1*, Robert L. Hammond2, Benjamin C. Haller3, Yannick Wurm1,4,§

1 Organismal Biology Department, Queen Mary University of London, London, UK

2 Department of Genetics and Genome Biology, University of Leicester, Leicester, UK

3 Department of Computational Biology, Cornell University, Ithaca, NY, USA

4 Alan Turing Institute, London, UK

* Joint first authors

§ Corresponding authors: rodrigopracana@gmail.com, y.wurm@qmul.ac.uk

	 	 	 Page of
1 9

mailto:rodrigopracana@gmail.com
mailto:y.wurm@qmul.ac.uk

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary Figures

Supplementary figure S1. The effect of haplodiploidy on the fixation rate of advantageous
mutations with different dominance coefficients (h). Simulations were run as in fig. 1D, but
we increased the number of individuals in haplodiploid populations to N = 2666. This
increase means that the haplodiploid populations have the same number of chromosomes
(1.5N = 4000.5) as diploid populations with size N = 2000 (2N = 4000 chromosomes). On
each plot, we also show the average difference in the number of fixed mutations between
haplodiploid and diploid simulations after 35,000 generations and a burn-in period of 15,000
generations. As we expected, haplodiploid populations with h < 1 had higher fixation rates
than diploid populations (Wilcoxon rank sum test, as shown), evidence of a stronger efficacy
of selection. At h = 1, a modest yet unexpected difference between haplodiploids and
diploids may be driven by the interference between positively selected alleles. We expect
this interference to be stronger in the haplodiploid populations because of the absence of
recombination in males. 

	 Page of 2 9

h = 0%
p < 10−66

h = 25%
p < 10−66

h = 50%
p < 10−66

h = 75%
p < 10−66

h = 100%
p < 10−38

0 15000 30000 0 15000 30000 0 15000 30000 0 15000 30000 0 15000 30000
0

500

1000

1500

2000

Generation

N
um

be
r o

f fi
xe

d
m

ut
at

io
ns

Ploidy Haplodiploid Diploid

W = 3.0
40% difference60% difference

W = 0.0W = 0.0 W = 0.0 W = 4869.5
24% difference 12% difference 3% difference

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary figure S2. We compared the non-Wright–Fisher simulations of neutral and
advantageous mutations of diploid populations (simulation parameters given in fig. 1) with
Wright–Fisher simulations with the same parameters. There was no difference in the number
of fixed mutations at the end of the simulation runs between the two types of simulation
(p > 0.05, Wilcoxon rank-sum tests, as shown). The solid black lines represent the mean
number of fixed mutations at the end of the simulation runs for each group. 

	 Page of 3 9

s = 0%
W = 21727.5, p = 0.14

s = 0.1%
W = 19291.5, p = 0.54

s = 0.3%
W = 20149.0, p = 0.90

s = 1%
W = 20073.0, p = 0.95

non-W
right-Fisher (D

iploid)
W

right-Fisher (D
iploid)

0

50

100

150

0

50

100

150

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

Number of fixed mutations at the end of simulation run

C
ou

nt

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary figure S3. Choosing appropriate burn-in periods is important. Simulations
in which mutations accumulate require a burn-in period of multiple generations before the
population reaches mutation–drift balance. Here, we examined the effects of varying burn-in
periods out of a total of 50,000 generations. For each tested burn-in period, we performed
200 neutral simulations of haplodiploid populations and 200 neutral simulations of diploid
populations (s = 0); each population included 1000 male and 1000 female individuals, as in
fig. 1A. For each simulation run, we counted the number of mutations that fixed between the
end of the burn-in period and the end of the run; solid black lines represent the mean
number for each group. Using burn-in periods of 12,500 or fewer generations resulted in a
difference between haplodiploid and diploid populations (p < 0.05, Wilcoxon rank-sum test,
as shown). This artifactual difference is likely to be caused by the lower effective population
sizes of haplodiploid populations, which are ¾ those of diploid populations. The smaller
effective population sizes lead haplodiploid populations to reach mutation–drift balance
earlier, which likely explains the higher number of fixed mutations in these populations.

	 Page of 4 9

H
aplodiploid

D
iploid

250 300 350 400 450 250 300 350 400 450 250 300 350 400 450 250 300 350 400 450 250 300 350 400 450

Number of fixed mutations at the end of simulation run

0

10

20

30

40

0

10

20

30

40

C
ou

nt

Ploidy
Haplodiploid
Diploid

11,000 generations

p = 0.020, W = 17309.5
1% difference

12,500 generations

p = 0.050, W = 17731.0
1% difference

15,000 generations

p = 0.129, W = 18245.5
no difference

20,000 generations

p = 0.254, W = 18680.5
no difference

10,000 generations

p = 0.002, W = 16405.0
2% difference

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary figure S4. Runtimes for haplodiploid simulations with 50,000 generations, a
recombination rate of 10-6, a 1:1 sex ratio, s = 0.001, h = 0, and the population size, mutation
rate, and genome size shown. The simulations were run using one 2.20GHz core on an Intel
Xeon E5-4600 v2 processor on an IBM x3750 M4 (8752) running CentOS Linux
release 7.9.2009. The time taken by each simulation is printed over each bar in the format
hours:minutes. 

	 Page of 5 9

14:57

58:04

00:37

02:59
10:33

00:10

84:27

04:54

09:31

33:18

00:41

Mutation rate = 1e−8 Mutation rate = 1e−7
G

enom
e size = 5e6

G
enom

e size = 1e6

2000 10000 20000 2000 10000 20000

0

25

50

75

0

25

50

75

Population size

R
un

tim
e

(h
ou

rs
)

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary Text
Below, we present the haplodiploidy simulation model in the standard ODD (Overview,
Design concepts, Details) format for describing individual-based models (Grimm et al. 2006).

Overview

Purpose

The model is designed to simulate basic haplodiploid inheritance (arrhenotoky), upon which
further investigations into the evolutionary genomic dynamics of haplodiploid species can be
built. Under haplodiploid inheritance, females are diploid while males are haploid. Females
can reproduce asexually to produce haploid male offspring from unfertilized eggs, or
sexually with a haploid male to produce diploid female offspring. The model is flexible as it is
independent of any particular species or empirical genome sequence. This model provides a
starting point for future haplodiploid simulations, since the evolutionary dynamics supported
by SLiM include migration, admixture, selective sweeps, complex mating schemes, and
continuous-space interactions.

State variables and scales

The implemented model has two hierarchical levels: individual and population. Individuals
are characterized by an individual number (an identifier for the particular individual), sex, and
age (although generations are currently non-overlapping; every individual lives to age 1). In
SLiM, all individuals are “diploid”, carrying two copies of a genome of fixed length, which can
be populated by mutations with given selection coefficients. For haploid males, the second
copy of the genome is kept empty and is designated as a “null” genome (a SLiM concept
that facilitates modeling of haploidy and related phenomena). The population is composed of
one non-spatial subpopulation of size with no further variables. Additional individual or
population variables could be added to the model.

Process overview and scheduling

SLiM divides events within each generation cycle into discrete phases that utilize ‘callbacks’:
blocks of code which control specific aspects of the simulation. Each generation starts with a
reproduction() callback, which controls the reproductive events that produce the next
generation of offspring. In our model’s reproduction() callback, individuals reproduce,
with a probability proportional to their relative fitness, until new individuals are produced.
The new offspring (aged 0) are added and the old generation (aged 1) is removed in an
early() callback. Finally, every 100 generations a late() callback outputs the generation
number and the number of mutations fixed in the simulation thus far.

K

K

	 Page of 6 9

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Design concepts

The effect of fitness is modelled explicitly in the reproduction() callback, where an
individual’s likelihood to be sampled (with replacement) as a parent for the next generation is
proportional to its relative fitness. The fitness of an individual is calculated based upon the
mutations present in the individual. Females can reproduce sexually or asexually to
respectively produce female and male offspring, while males can only reproduce with
females to produce female offspring. Outside of reproduction there is no interaction between
the individuals in the model as implemented. Mutation and recombination rates (per base
position, per generation) are set in the initialize() callback at the beginning of
simulation. Stochasticity in the model arises from mutation, recombination, and the sampling
of parents. To validate the model, we compared the rate of fixation of mutations with different
selection coefficients with a parallel model built for diploid populations.

Details

Full code for the model is available as a Supplementary File. Here, we outline the concepts
used, in some cases illustrated by code snippets.

Initialization

SLiM models begin with an initialize() callback which defines constants and
parameterizes the model. In this model’s initialize() callback the model type is
selected to be non-Wright–Fisher so that we can override default reproduction methods. Sex
is configured to be modelled explicitly, since otherwise individuals would be hermaphroditic.

We set several parameters that could vary across simulations. A constant representing the
population size, K, is set to 2000. The mutation rate (per base position, per generation) is set
to 10⁻8. The type of mutations to be modelled is configured with a name (m1), a given
dominance coefficient, a fixed (“f”) distribution of fitness effects, and a given selection
coefficient. The type of genomic elements to be simulated is similarly configured with a
name (g1) and a type of mutations to utilize (m1). Importantly, the haploid dominance
coefficient “m1.haploidDominanceCoeff” of the mutations is set to 1, meaning the
selection coefficient of a mutation in a haploid individual is equal to that of a homozygous
diploid. A single genomic element of length 106 base pairs is set up to use g1, representing
one chromosome. Finally, the recombination rate for the model (per base position, per
generation) is set (10⁻6).

The last stage of model setup occurs in the first generation of the model, in which K
individuals are created and added to a new subpopulation, p1, with an implicit initial sex
ratio of 0.5 (half male, half female).

Input

In this study, we only varied selection and dominance coefficients of the modelled mutations,
set in the initialize() callback. However, when the model is applied in more species-
specific investigations other parameters could be varied or added, and these could change
over time or across subpopulations.

	 Page of 7 9

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Submodels

The haplodiploid mode of inheritance is set up in the reproduction() callback. To
produce K / 2 males for the new generation t, K / 2 females are sampled from the previous
generation t − 1:

// Identify females

inds = subpop.individuals;

is_female = (inds.sex == "F");

females = inds[is_female];

// Fitness of each female

fit = subpop.cachedFitness(NULL);

FemWeights = fit[is_female];

// Sample females, with replacement, weighted by relative fitness

sampledFemalesHap = sample(females,

 asInteger(K/2),

 replace = T,

 weights = femWeights);

This sampling is weighted based on the relative fitness of each female and performed with
replacement, so that some females from generation t – 1 may produce multiple offspring
while others may produce none.

Each female undergoes recombination, with breakpoints generated by SLiM based upon the
recombination rate and chromosome length. Note that the haploid male offspring are
“diploid” (individuals are always diploid in SLiM), but their second chromosome is kept empty
and “null” when they are produced, using the addRecombinant() method provided by
SLiM:

subpop.addRecombinant(strand1 = sampledFemale.genome1,

 strand2 = sampledFemale.genome2,

 breaks1 = breaks,

 strand3 = NULL,

 strand4 = NULL,

 breaks2 = NULL,

 sex = "M");

Similarly, K / 2 diploid female offspring are produced for generation t by the sexual
reproduction of K / 2 males and K / 2 females sampled from the t − 1 generation. As with the
sampling of females described above, males are sampled weighted by their relative fitness,
with replacement. The first chromosome of the diploid females results from the
recombination of the mother’s genome, and the second chromosome is a copy of the
father’s haploid genome:

subpop.addRecombinant(strand1 = sampledFemale.genome1,

 strand2 = sampledFemale.genome2,

 breaks1 = breaks,

 strand3 = sampledMale.genome1,

 strand4 = NULL,

 breaks2 = NULL,

 sex = "F");

	 Page of 8 9

Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

To ensure that generations are non-overlapping, we use a survival() callback, returning
only the new generation of individuals. This also prevents SLiM from using fitness values to
govern mortality, which is the default behavior for nonWF models, since we use fitness for
mating probabilities instead.

survival()

{

// non-overlapping generations, avoid fitness-based mortality

return (individual.age == 0);

}

After this, a late() callback collates measurements about the simulation run every 100
generations, for instance using sim.substitutions.size() to count the number of fixed
mutations.

Supplementary References

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T,
Heinz SK, Huse G et al. (2006). A standard protocol for describing individual-based and
agent-based models. Ecol Model., 198:115–126.

	 Page of 9 9

