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Supplementary Figures

Supplementary figure S1. The effect of haplodiploidy on the fixation rate of advantageous 
mutations with different dominance coefficients (h). Simulations were run as in fig. 1D, but 
we increased the number of individuals in haplodiploid populations to N = 2666. This 
increase means that the haplodiploid populations have the same number of chromosomes 
(1.5N = 4000.5) as diploid populations with size N = 2000 (2N = 4000 chromosomes). On 
each plot, we also show the average difference in the number of fixed mutations between 
haplodiploid and diploid simulations after 35,000 generations and a burn-in period of 15,000 
generations. As we expected, haplodiploid populations with h < 1 had higher fixation rates 
than diploid populations (Wilcoxon rank sum test, as shown), evidence of a stronger efficacy 
of selection. At h = 1, a modest yet unexpected difference between haplodiploids and 
diploids may be driven by the interference between positively selected alleles. We expect 
this interference to be stronger in the haplodiploid populations because of the absence of 
recombination in males. 

	 Page  of 2 9

h = 0%
p < 10−66

h = 25%
p < 10−66

h = 50%
p < 10−66

h = 75%
p < 10−66

h = 100%
p < 10−38

0 15000 30000 0 15000 30000 0 15000 30000 0 15000 30000 0 15000 30000
0

500

1000

1500

2000

Generation

N
um

be
r o

f fi
xe

d 
m

ut
at

io
ns

Ploidy Haplodiploid Diploid

W = 3.0
40% difference60% difference

W = 0.0W = 0.0 W = 0.0 W = 4869.5
24% difference 12% difference 3% difference



Individual-based model of haplodiploidy	 	 Letter to GBE (Supplementary Text)

Supplementary figure S2. We compared the non-Wright–Fisher simulations of neutral and 
advantageous mutations of diploid populations (simulation parameters given in fig. 1) with 
Wright–Fisher simulations with the same parameters. There was no difference in the number 
of fixed mutations at the end of the simulation runs between the two types of simulation 
(p > 0.05, Wilcoxon rank-sum tests, as shown). The solid black lines represent the mean 
number of fixed mutations at the end of the simulation runs for each group. 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Supplementary figure S3. Choosing appropriate burn-in periods is important. Simulations 
in which mutations accumulate require a burn-in period of multiple generations before the 
population reaches mutation–drift balance. Here, we examined the effects of varying burn-in 
periods out of a total of 50,000 generations. For each tested burn-in period, we performed 
200 neutral simulations of haplodiploid populations and 200 neutral simulations of diploid 
populations (s = 0); each population included 1000 male and 1000 female individuals, as in 
fig. 1A. For each simulation run, we counted the number of mutations that fixed between the 
end of the burn-in period and the end of the run; solid black lines represent the mean 
number for each group. Using burn-in periods of 12,500 or fewer generations resulted in a 
difference between haplodiploid and diploid populations (p < 0.05, Wilcoxon rank-sum test, 
as shown). This artifactual difference is likely to be caused by the lower effective population 
sizes of haplodiploid populations, which are ¾ those of diploid populations. The smaller 
effective population sizes lead haplodiploid populations to reach mutation–drift balance 
earlier, which likely explains the higher number of fixed mutations in these populations.
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Supplementary figure S4. Runtimes for haplodiploid simulations with 50,000 generations, a 
recombination rate of 10-6, a 1:1 sex ratio, s = 0.001, h = 0, and the population size, mutation 
rate, and genome size shown. The simulations were run using one 2.20GHz core on an Intel 
Xeon E5-4600 v2 processor on an IBM x3750 M4 (8752) running CentOS Linux 
release 7.9.2009. The time taken by each simulation is printed over each bar in the format 
hours:minutes. 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Supplementary Text
Below, we present the haplodiploidy simulation model in the standard ODD (Overview, 
Design concepts, Details) format for describing individual-based models (Grimm et al. 2006).


Overview

Purpose

The model is designed to simulate basic haplodiploid inheritance (arrhenotoky), upon which 
further investigations into the evolutionary genomic dynamics of haplodiploid species can be 
built. Under haplodiploid inheritance, females are diploid while males are haploid. Females 
can reproduce asexually to produce haploid male offspring from unfertilized eggs, or 
sexually with a haploid male to produce diploid female offspring. The model is flexible as it is 
independent of any particular species or empirical genome sequence. This model provides a 
starting point for future haplodiploid simulations, since the evolutionary dynamics supported 
by SLiM include migration, admixture, selective sweeps, complex mating schemes, and 
continuous-space interactions.


State variables and scales

The implemented model has two hierarchical levels: individual and population. Individuals 
are characterized by an individual number (an identifier for the particular individual), sex, and 
age (although generations are currently non-overlapping; every individual lives to age 1). In 
SLiM, all individuals are “diploid”, carrying two copies of a genome of fixed length, which can 
be populated by mutations with given selection coefficients. For haploid males, the second 
copy of the genome is kept empty and is designated as a “null” genome (a SLiM concept 
that facilitates modeling of haploidy and related phenomena). The population is composed of 
one non-spatial subpopulation of size  with no further variables. Additional individual or 
population variables could be added to the model.


Process overview and scheduling

SLiM divides events within each generation cycle into discrete phases that utilize ‘callbacks’: 
blocks of code which control specific aspects of the simulation. Each generation starts with a 
reproduction() callback, which controls the reproductive events that produce the next 
generation of offspring. In our model’s reproduction() callback, individuals reproduce, 
with a probability proportional to their relative fitness, until  new individuals are produced. 
The new offspring (aged 0) are added and the old generation (aged 1) is removed in an 
early() callback. Finally, every 100 generations a late() callback outputs the generation 
number and the number of mutations fixed in the simulation thus far.


K

K
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Design concepts

The effect of fitness is modelled explicitly in the reproduction() callback, where an 
individual’s likelihood to be sampled (with replacement) as a parent for the next generation is 
proportional to its relative fitness. The fitness of an individual is calculated based upon the 
mutations present in the individual. Females can reproduce sexually or asexually to 
respectively produce female and male offspring, while males can only reproduce with 
females to produce female offspring. Outside of reproduction there is no interaction between 
the individuals in the model as implemented. Mutation and recombination rates (per base 
position, per generation) are set in the initialize() callback at the beginning of 
simulation. Stochasticity in the model arises from mutation, recombination, and the sampling 
of parents. To validate the model, we compared the rate of fixation of mutations with different 
selection coefficients with a parallel model built for diploid populations.

Details

Full code for the model is available as a Supplementary File. Here, we outline the concepts 
used, in some cases illustrated by code snippets.


Initialization

SLiM models begin with an initialize() callback which defines constants and 
parameterizes the model. In this model’s initialize() callback the model type is 
selected to be non-Wright–Fisher so that we can override default reproduction methods. Sex 
is configured to be modelled explicitly, since otherwise individuals would be hermaphroditic.


We set several parameters that could vary across simulations. A constant representing the 
population size, K, is set to 2000. The mutation rate (per base position, per generation) is set 
to 10⁻8. The type of mutations to be modelled is configured with a name (m1), a given 
dominance coefficient, a fixed (“f”) distribution of fitness effects, and a given selection 
coefficient. The type of genomic elements to be simulated is similarly configured with a 
name (g1) and a type of mutations to utilize (m1). Importantly, the haploid dominance 
coefficient “m1.haploidDominanceCoeff” of the mutations is set to 1, meaning the 
selection coefficient of a mutation in a haploid individual is equal to that of a homozygous 
diploid. A single genomic element of length 106 base pairs is set up to use g1, representing 
one chromosome. Finally, the recombination rate for the model (per base position, per 
generation) is set (10⁻6). 


The last stage of model setup occurs in the first generation of the model, in which K 
individuals are created and added to a new subpopulation, p1, with an implicit initial sex 
ratio of 0.5 (half male, half female).


Input


In this study, we only varied selection and dominance coefficients of the modelled mutations, 
set in the initialize() callback. However, when the model is applied in more species-
specific investigations other parameters could be varied or added, and these could change 
over time or across subpopulations.
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Submodels


The haplodiploid mode of inheritance is set up in the reproduction() callback. To 
produce K / 2 males for the new generation t, K / 2 females are sampled from the previous 
generation  t − 1:


// Identify females

inds = subpop.individuals;

is_female = (inds.sex == "F");

females = inds[is_female];


// Fitness of each female

fit = subpop.cachedFitness(NULL);

FemWeights = fit[is_female];


// Sample females, with replacement, weighted by relative fitness

sampledFemalesHap = sample(females,


 asInteger(K/2),

 replace = T,

 weights = femWeights);


This sampling is weighted based on the relative fitness of each female and performed with 
replacement, so that some females from generation t – 1 may produce multiple offspring 
while others may produce none.


Each female undergoes recombination, with breakpoints generated by SLiM based upon the 
recombination rate and chromosome length. Note that the haploid male offspring are 
“diploid” (individuals are always diploid in SLiM), but their second chromosome is kept empty 
and “null” when they are produced, using the addRecombinant() method provided by 
SLiM:


subpop.addRecombinant(strand1 = sampledFemale.genome1,

    strand2 = sampledFemale.genome2,

    breaks1 = breaks,

    strand3 = NULL,

    strand4 = NULL,

    breaks2 = NULL,

    sex = "M");

Similarly, K / 2 diploid female offspring are produced for generation t by the sexual 
reproduction of K / 2 males and K / 2 females sampled from the t − 1 generation. As with the 
sampling of females described above, males are sampled weighted by their relative fitness, 
with replacement. The first chromosome of the diploid females results from the 
recombination of the mother’s genome, and the second chromosome is a copy of the 
father’s haploid genome:


subpop.addRecombinant(strand1 = sampledFemale.genome1,

    strand2 = sampledFemale.genome2,

    breaks1 = breaks,

    strand3 = sampledMale.genome1,

    strand4 = NULL,

    breaks2 = NULL,

    sex = "F");
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To ensure that generations are non-overlapping, we use a survival() callback, returning 
only the new generation of individuals.  This also prevents SLiM from using fitness values to 
govern mortality, which is the default behavior for nonWF models, since we use fitness for 
mating probabilities instead.


survival()

{


// non-overlapping generations, avoid fitness-based mortality

return (individual.age == 0);


}


After this, a late() callback collates measurements about the simulation run every 100 
generations, for instance using sim.substitutions.size() to count the number of fixed 
mutations.
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