
Timepark: A point-and-click modeling
environment

Internship Report

Yannick WURM, idh@poulet.org

January 2004

Abstract

Here I present work on a point and click modeling environment code-
named “Timepark”. It is the result of an internship with Nicolas ZINOVI-
EFF, a self-employed software engineer. The work is divided up into two
phases. During a first phase, we have developed a C++ framework for
modeling, simulation and visualization of certain mathematical systems.
The mathematical models the C++ framework is designed for are based
on functions of time and their derivatives: time-dependent ordinary dif-
ferential equations (ODEs). We tried to develop the framework in an open
manner: cross-platform open-source tools were chosen whenever possible,
and the source code for our framework will be distributed under an open-
source license.

In the second phase, we have started development on a powerful yet ac-
cessible modeling, simulation and visualization environment, code-namend
Timepark. It is built around our C++ framework. The intended applica-
tions for Timepark include use as a teaching or learning tool in schools and
universities. In any context, it may one day be used to illustrate evolution
of time series data in a visually stunning manner. As Timepark develop-
ment continues, features and flexibility shall be added that could turn it
into a modelers tool of choice for scientific use.

Both phases of our work are presented in this report.

A great thanks to:

Nicolas Zinovieff my mentor during this internship, for guiding
me and helping me out of some very sticky situations;

Jean-Michel Fayard and Guillaume Beslon from the Bioinfor-
matics and Modeling department at Insa de Lyon, for making
this project a recognized part of my studies;

The open-source community for being everything it is;

Apple Computer for creating an insanely great Operating System
and development environment.

1

. .
Preamble: Internship host company

Nicolas Zinovieff is a self-employed software engineer. He obtained his
masters-equivalent DEA (diplôme d’études approfondies) in September 2003,
and has been making a living developing software since 1999. His major achieve-
ments include software development for solution maintenance and deploy-
ment at Apple Computer in Paris, France as well as web, security and network
consulting and software development for RDM Hone (Philadelphia, PA, USA).
More recently, Nicolas has started teaching an a course on embedded systems
at Ecole Centrale d’Electronique in Paris. He is also currently developing DVD
post-production tools for Amazing Studios, Paris.

I have known Nicolas Zinovieff since 1996, when he joined an Internet Re-
lay Chat (IRC) discussion room named #poulet, that a number of Franco-phone
Macintosh users spent time on (including myself). Many are successful inde-
pendent software developers today.1

In May 2002, Nicolas and I spent 8 days at Apple’s Worldwide Developer
Conference in San Jose, California thanks to scholarships obtained as student-
developers. We stayed in Palo Alto, and had a long bus ride to San Jose. One
morning, Nicolas mentioned the idea of an easy-to-use visual modeling envi-
ronment, and so Timepark was born.

. .
Contents

1 Motivation 3

2 Concepts, Methods and Materials 3

3 First Result: A Preliminary C++ Framework for Modeling, Simulating
and Visualizing 7

4 Second Result: Timepark, an end-user’s Modeling Environment 11

5 Discussion 14

6 Closing Remark 19

2 CONCEPTS, METHODS AND MATERIALS

. .
1 Motivation

In schools, physical science is often taught using text-book examples and
aided with practical experiments. Some experiments however, such as launch-
ing a satellite or observing an electron’s movement, are not that simple to un-
dertake. In the western world, most schools are now equipped with comput-
ers. Why not use computing to help students learn and ease the understanding
of certain scientific concepts? What if teachers could quickly and simply create
3d computer-simulations and let students virtually experiment by changing
parameters? What if a student working on his own could see the influence of
initial parameters and choice of model on the behavior of a dynamic system
through hands-on in silico experiments?

In a professional environment, static charts are frequently used as a means
of conveying dynamic data. Although a chart may often suffice to illustrate the
data, a graphical animation can increase attention and thus have much greater
impact on the audience, particularly when projected onto a large screen.

Many computer-based modeling tools exist today. They usually fall into
one of two categories: either they are versatile and have a very steep learning
curve, or they are relatively straightforward but intended for a very limited
number of specific models (such as “Dynamic” or “Satellites”, used in French
schools2). The formers’ limitation constrains the user into certain usage cases,
whereas the latter are inappropriate for young students or professionals who
cannot dedicate the time necessary to master them.

Our aim with Timepark is to do for modeling what Apple Computer’s
products have done in many domains, including personal computing, digital
music, and digital video production: to make modeling simple and accessible
to everyone.

. .
2 Concepts, Methods and Materials

Mathematical concepts: derivatives and integration
A defining characteristic of a dynamic system is that its variable’s values change
over time. A variable’s variation (sign and speed) is quantified by its deriva-
tive: “the instantaneous change of one quantity relative to another” [Wor97].

For time-based systems, derivatives are often given relatively to time. Take
for example a rocket flying in a straight line. The time-derivative of its posi-
tion (flown distance) along the line is its speed, expressed instantaneously, for
example in kilometers per hour or meters per second.
A variable’s derivative function (relative to another variable) is the function
giving all instantaneous derivative values over time. The value of zposition’s
derivative at the time-point T = ta is the instantaneous change of position
along the z-axis relatively to time: speed. Mathematically, [d(zposition)/dt]T=ta

=
zspeed(t).

The reciprocal concept is also used: a variable’s values over time can be de-

January 2004 Timepark Internship: Scientific Report 3

2 CONCEPTS, METHODS AND MATERIALS

termined unambiguously if its initial value and the values of its time-derivative
function are known. The process of obtaining a variable’s values from its
derivative and initial value is called integration. To take a very simple example,
please consider that when our experiment begins, our rocket is at zposition = 0
meters. If we consider its speed to be constant at 100 meters/second, then after
ten seconds our rocket will have reached zposition = 1000 meters (this is illus-
trated in Figure 2 (a)).

(a) (b)

Figure 1: a: Distance flown by a rocket flying at a constant speed of 100 meters per second. b:
If speed is initially null. Constant acceleration leads to gradually increasing speed,
which in turn leads to exponentially increasing flown distance

The previous example of integration may seem very straightforward. This
was because we considered speed to be constant. Actually, the function one
wants to integrate is itself often a function of time. This is the case with a
rocket at lift-off: its initial speed and position may be zero; its acceleration is
not. Thus, if acceleration, the time-derivative of speed, is constant and positive,
speed will increase over time. The more speed increases, the faster position will
increase. This is illustrated in Figure 2 (b): zspeed and thus zposition values rise
rapidly if zacceleration is constant and positive. Once again, this type of relation
becomes more complex if acceleration is not constant.

Geometrically, integrating a function over time means calculating the sur-
face of the area between the curve representing the function’s values and the
horizontal abscissa line for which T = 0 (when the curve is below the abscissa
line, the surface is taken negatively).

Computer-based integration of discrete values means approxi-
mation
Variation of values over time brings up a problem specific to computer-simulation:
approximation. Time varies continuously, but representing time on the com-
puter within a finite amount of memory requires time to be considered dis-
cretely. For a given problem a time interval such as ∆T = 0.1seconds is chosen.
For each time interval taken individually, the function to be integrated can be
considered constant. Thus, a value of zposition when 100 intervals have passed
can be obtained by calculating values of zspeed and integrating to get zposition

for each new instant, one step at a time. This approximation, which consists

January 2004 Timepark Internship: Scientific Report 4

2 CONCEPTS, METHODS AND MATERIALS

in considering that during an entire time interval ∆T , the derivative is always
equal to the value it takes at the beginning of that time interval (Figure 2). This
is a first order approximation.

zspeed,T = d(zposition,T)/dt
' d(zspeed,T)/dt×∆T + zspeed,T−1

' zacceleration,T ×∆T + zspeed,T−1

(a) (b)

Figure 2: The rectangle approximation method is one way of approximating integration when
only discrete values are known

Other less error-inducing integration approximation methods exist, such as
the trapezoidal method (also first order), or the Runge-Kutta method. See more
about this in the discussion section (on page 16).

Software engineering
Developing our modeling, simulation and visualization environment was di-
vided up into two distinct tasks: the first was programming a robust cross-
platform modeling, simulation and visualization framework. The second was
using the framework as an engine around which a graphical user interface-
based application was developed for end-users, Timepark.

Development methodology

After determining a global vision for the project, desired features were iden-
tified and realistic goals set. The early development process was exploratory
and documentary; it helped in the decision-making process. Afterwards, a
roughly iterative development scheme was used: short-term (weekly or bi-
weekly) goals were set and obtained or revised, while trying to keep the code-
base stable whenever possible and keeping longer-term goals in sight.

During development, a series of interface-independent tests (including unit-
tests) were run systematically on the engine framework whenever its code was
changed.

Development Tools

Code compilation was first managed using Apple Computer’s Project Builder
running on Mac OS 10.2, where compilation is jam3-based. In November 2003,
we upgraded to Mac OS 10.3 and the X-Code development environment which
use a native build system.

January 2004 Timepark Internship: Scientific Report 5

2 CONCEPTS, METHODS AND MATERIALS

Code was mainly written in XEmacs 21.4 as well as in Apple’s aforemen-
tioned integrated development environments. The graphical user interface
was created using Apple Computer’s Interface Builder. The compiler GCC
2.95.2 was used. Debugging was done with gdb, the GNU Project debugger4,
directly and indirectly using Apple’s gdb-wrapper. Apple-supplied perfor-
mance profiling tools were also used, namely Shark, OpenGL Profiler and Mal-
locDebug.

Source code was managed using Concurrent Versions System (CVS5). Doc-
umentation was generated automatically from header files using doxygen6.
Other documents were typeset using LATEX2e 7.

Development platform

Code was mainly written on a iBook G3 (November 2002), and a 1.6GHz G5
Power Macintosh. CVS Server 1.11 ran on a NetBSD 1.6.1 Pentium-class ma-
chine.

Languages, libraries and Application Programming Interfaces (APIs)

The engine was programmed in C++, often using the GCC 2.95.2 C++ Stan-
dard Template Library (mainly container and input/output-related classes).
OpenGL 1.2 was used for graphical visualization. Xerces 2.1 was used for
XML-input validation (using XML Schema 1.0) and parsing. Flex++ 2.54 and
Yacc 1.9 were used to generate code for lexical parsing of mathematical expres-
sions.

A graphical user interface was created using Objective-C++ and Apple Com-
puter’s Cocoa API on Mac OS X.

January 2004 Timepark Internship: Scientific Report 6

3 FIRST RESULT: A PRELIMINARY C++ FRAMEWORK FOR MODELING,
SIMULATING AND VISUALIZING

. .
3 First Result: A Preliminary C++ Framework for Modeling,

Simulating and Visualizing

Modeling concept
The developed framework can be used for modeling certain time-dependent
systems as described below: a system contains objects that have internal vari-
ables. These variable’s values can be constant or vary over time. To have a
variable’s value change over time, it must be defined in one of two ways. The
first is by directly applying a function of time. An example of the second is
using speed to find out position: by using the variable’s derivative. If the vari-
able’s initial value is given and the variable’s derivative is defined as a function
of time, the variable’s values can be determined. To complicate things further,
the variable’s derivative can itself also be defined through it’s derivative (the
derivative of speed is acceleration).

The function defining a variables value can be unique, but it is also possible
to have a choice made automatically between several, depending on the sys-
tem’s variable’s values. To do this, instead of defining a single function, pairs
of boolean control statements and functions must be defined. Two of these con-
trol statements may not be simultaneously true. During simulation, the single
true control statement’s corresponding function will be used.

We have chosen to name a function or set of control-statements and func-
tions a relation. It is specific to one of an object’s variables. Relations are
grouped together as laws.

To eliminate the need to repeatedly define variables for different objects
that may have things in common, an object class hierarchy was implemented.
The basic class we use for graphical visualization is defined with the following
variables: xposition, yposition, zposition, xrotation, yrotation, zrotation and size. For
every object created, these variables are thus defined. Other classes can be de-
fined (such as “Physical Object” or “Charged Object”), providing they contain
at least one additional variable definition (such as Mass or ElectricalCharge).
A class can and must have one unique parent from which it inherits variables,
but a parent can have several children (which inherit from its variables).

Mathematical possibilities
A variable’s variation can be defined directly as a function of time, or indi-
rectly, through the definition of its derivative (first or n-th order). Mathemati-
cal expressions made up of standard mathematical operators (+, −, ×, ÷) and
a number of constants and functions can be interpreted and evaluated (see the
table in figure 3 for a short list).

Time representation
In the framework, time is represented as a decimal value of arbitrary unit. As
mentioned on page 4, time is discretized, which means that it is cut up into in-
divisible steps. During one simulation run, all time steps have the same length.

January 2004 Timepark Internship: Scientific Report 7

3 FIRST RESULT: A PRELIMINARY C++ FRAMEWORK FOR MODELING,
SIMULATING AND VISUALIZING

Operators : +, −, ×, ÷
Precedence operators: (,)

Trigonometrical functions : cos, acos, sin, asin, tan, atan
Exponential operators : sqrt (square root), pwr (exponent)

Time-related: T (time), ∆T (time interval)
Other: constants, var (one of any object’s variables)

Boolean operators: =, ≤, ≥, <, >, 6=

Figure 3: The developed framework can evaluate mathematical expressions composed of differ-
ent elements, shown above the horizontal line in this table. A mathematical expression
may be used as a function defining a variable’s value. Two expressions, when com-
bined with a boolean operator, make up a control statement which can be true or false.

Figure 4: A simple example of laws and single-function relations: An object named “Projectile”
is submitted to gravity (downward acceleration), and air resistance (backwards accel-
eration). A series of “Implicit relations” were defined that take care of integrating the
defined acceleration.

Simulation algorithm
Simulation starts out with an incrementation of time’s value by one time step.
The time-dependent functions in the system’s relations are evaluated; the cor-
responding variables obtain the new values. This is repeated many times.

Internally, every relation is stored within a law (see page 7). Also, deriva-
tives are considered much like other variables. Taking this into account, the
following pseudo-code gives the algorithm used for simulation:

/* Set up integration approximation */
1. For each law in the system,

For each relation in the law,
if the relation defines a variable’s derivative’s value.

define the integrating relation(s) permitting to calculate
the primitive’s value through integration if necessary

/* Simulate */
2. For each law in the system,

For each relation in the law,
if the relation contains a unique time-dependent function,

evaluate the function.
The relation concerns one variable of one object.
Set the variable’s new value to the evaluation result.

Otherwise, the relation contains pairs of boolean control-
statements and functions.

Evaluate the control-statements.
Only one of them can be true.

Evaluate the corresponding function.
The relation concerns one variable of one object.
Set the variable’s new value to the evaluation result.

Increment the system’s time by one time-step and repeat 2 until the
system’s time counter has attained a certain value.

January 2004 Timepark Internship: Scientific Report 8

3 FIRST RESULT: A PRELIMINARY C++ FRAMEWORK FOR MODELING,
SIMULATING AND VISUALIZING

Main C++ classes
The main C++ classes used as a developer’s building-blocks of a system created
with our framework are:

TPWorld : This is the system “container”. Once TPObjects and TPLaws have
been added, TPWorld’s simulate method can be called. Others include
verifyIntegrity, setTimeStep and setTimeFrame.

TPObject : A TPObject has a name and contains TPVariables, identified by their
name.

TPLaw : A TPLaw is a group of TPRelations.
TPRelation : A TPRelation governs one of a TPObject’s TPVariables. This hap-

pens through the definition of one or more mathematical TPExpressions
that can be evaluated. If several TPExpressions are given, each must be
paired with a boolean statement; only one of which should be true at a
time. The TPExpression whose boolean statement is true is used.

TPExpression : To represent mathematical expressions, a trees of TPExpression
subclasses are used.

Additional features
The developed framework has other features, including a simple system in-
tegrity verification. It currently checks whether the objects and variables refer-
enced and the mathematical expressions used in relations are correctly defined.

The framework has support for writing and loading system definitions to
and from files respecting the supplied XML Schema 1.0 structure.

After simulation, the variable’s values over time are still stored in memory.
The system’s previous states can thus be obtained, and the system’s variable’s
evolution can be written to a delimited text file.

The system’s evolution as obtained by simulation can also be displayed in-
side an OpenGL Context either real-time or post-processing. The system’s ob-
jects are represented using models from standard files in the Alias Wavefront
.obj format (or with generic shapes).

Mathematical validation
The mathematical simulation engine was validated using known mathemati-
cal models and simulation results from other sources. Dynamic system simu-
lation data reproduced qualitatively includes Lotka-Volterra simulation points
(as obtained from [Sha97]), shown in figure 3(a). The quantitative differences
between data obtained in a Microsoft Excel Spreadsheet and using our math-
ematical framework are very small (see figure 3(b)): the relative error is less
than 10−5.

Distribution Policy
The C++ framework for modeling, simulation and visualization will be open-
sourced under the Lesser Gnu Public License (LGPL).

January 2004 Timepark Internship: Scientific Report 9

3 FIRST RESULT: A PRELIMINARY C++ FRAMEWORK FOR MODELING,
SIMULATING AND VISUALIZING

(a) (b)

Figure 5: a: Simulation results for a Lotka-Volterra Predator-Prey system defined by
d(Predator)/dt = r × Predator − a × Predator × Prey and d(Prey)/dt =
b × Prey × Predator − m × Prey, with initially Predator = 15, Prey = 50.
b: Error relative to the same simulation carried out in a Microsoft Excel spreadsheet
[Sha97]

Development pattern
The framework was developed in an object-oriented manner, using the Model-
View-Controller paradigm. Sub-classing was used when deemed appropriate,
so as to have a large amount of potential for extending the existing framework.
This concerns for example the mathematical expressions, visualization meth-
ods and file output methods.

The API was used as the engine for the end-user application described in
the next section.

January 2004 Timepark Internship: Scientific Report 10

4 SECOND RESULT: TIMEPARK, AN END-USER’S MODELING
ENVIRONMENT

. .
4 Second Result: Timepark, an end-user’s Modeling

Environment

Using Apple Computer’s Cocoa API as well as the previously described
modeling, simulation and visualization framework, an end-user application
was developed. It is currently at an early preview stage.

This graphical user interface wrapper for the previously described frame-
work gives an end-user point-and-click access to many of its modeling, simu-
lation and visualization features. Objects can be created, variable values mod-
ified and laws and relations defined to govern the variable’s variations over
time (these term’s meanings were defined in “Modeling Concept” on page 7).

For simulation, the desired time-increment can be set and simulation is vi-
sualized in 3d in real time (frames are dropped if simulation is very slow).

The user can also visualize existing simulation data. Both playback of ex-
isting data and simulation can be paused and resumed. Time-dependent data
can be exported, and the information defining a system can be saved to and
opened from files.

Overview of the User interface
For a given system, one main window is used, shown in figure 4. It is meant
to be maximized so that the viewing area is as big as possible. This window is
divided up into several distinct parts. On the left side is a 3-d representation
of the system and the objects it contains. The right side contains different user-
interface elements to help create and inspect the system. Spanning the bottom
of the window are controls to govern simulation and playback. The window
and all main elements are re-sizeable. Some can be hidden.
Here are some details concerning the individual elements:

3-d Representation (Figure 4.a): Using the 3-d graphics standard OpenGL, the
3-d representation shows the objects in the current system in (x,y,z) coor-
dinate space. The system is shown as viewed by a camera, which’s height
and position may be altered. Height is controlled by a slider, situated on
the far left. Click-dragging within the 3-d representation area permits
rotating the camera around the display’s center. Display is usually cen-
tered around the system’s coordinate origin, where three unitary vectors
are shown, giving the x, y and z-axis directions.

Current Objects Inspector (Figure 4.b): This is where a list of the system’s
objects and their variable’s precise values is displayed. It is structured
hierarchically as a two-level outline-view. The top level items are the
system’s objects. More information about an object can be obtained by
expanding the outline for that object. All of the object’s variables and
their values are then shown on a second level. The variable’s values can
be edited by the user as can an object’s identifying name. When its name
is selected, an object can also be removed from the system by clicking the
Remove button.

Current Laws Inspector (Figure 3): The system’s laws and relations are cre-
ated here; it’s hierarchy resembles that of the Current Objects Inspector.
Since a relation is necessarily stored within a law, this outline-view’s top
level are laws. The second level are relations. The information defining
laws and relations is displayed. Thus, a law’s names and the relations it
contains are displayed. For each relation, the object and variable it con-
cerns is given, as is the mathematical expression which will be used to

January 2004 Timepark Internship: Scientific Report 11

4 SECOND RESULT: TIMEPARK, AN END-USER’S MODELING
ENVIRONMENT

calculate new values.
All of this information may be modified by the user. To change a rela-
tion’s object, the user chooses one of a list of the system’s objects (iden-
tified by name) from a pop-up-menu. Likewise, a pop-up-menu of an
object’s variables permits choosing between them.
Laws and relations can be added to and removed from the system by
clicking the Add and Remove buttons.

Object Library (Figure 4.c): This is a table of all available 3-d object repre-
sentations. An object instance is created in the system by the “drag and
drop” metaphor: the user clicks on one of the table’s rows and drags it
into the 3-d representation on the left.

Simulation and Playback Controls (Figure 4.d) This area spanning the bot-
tom of the screen displays the current value of the system’s time. It also
shows the time-interval which will be used during simulation. This value
may not be changed while simulation is running.
Once the system has been defined, the user can click on the Simulation
button. When simulation has started, the Simulation button no longer ex-
ists: it is replaced by a button titled Pause. When simulation is paused,
this button is replaced once again. We will explain a little further down.
Two additional controls also become available: a Reset button, and a hor-
izontal slider. Clicking the Reset button puts the system back into it’s
initial state (simulation data is lost). Changing the horizontal slider’s
value lets the user scroll back to any available time point. A Playback
Data button then appears where the Pause and Simulation buttons were.
When clicked, the system’s evolution is shown until reaching the instant
at which simulation was stopped (playback may also be paused). Once
that point is reached, simulation may be resumed from where it left off.

Figure 6: Snapshot of a typical Timepark screen. a: 3-d representation of the system’s objects.
b: summary of the system’s Current Objects. Can be hidden to show Current Laws
insted. c: Available objects are shown in this Object Library. d: Controls for launch-
ing simulation. When simulation is paused, a slider appears on the left. It permits
scrolling back in time.

January 2004 Timepark Internship: Scientific Report 12

4 SECOND RESULT: TIMEPARK, AN END-USER’S MODELING
ENVIRONMENT

Timepark in action
The user starts out with an empty system, represented by a completely black
3-d representation area (only the coordinate origin and directions are shown).
He or she begins adding objects by dragging the desired ones from the Ob-
ject Library on the lower right, and placing them into the 3-d representation
at the desired (x; y) coordinates. On the top right, either the system’s Current
Objects, or it’s Current Laws are displayed. If the Current Objects view is dis-
played, it is updated as the user drops objects into the visualization area. Here,
the user can change object’s names and fine-tune their variable’s initial values.

The next step is creating laws. Accessing the Current Laws view hides the
Current Objects view. A first untitled law and empty relation are created by
clicking on the Add button. They are each on one row. The law may be re-
named. For the relation, an object is first chosen from a pop-up-menu list of
the systems’s objects. In the next pop-up menu, one of the chosen object’s vari-
ables may be selected. Then a mathematical expression is typed into the last of
the relation’s fields. It will give the referenced variable it’s value. This process
can be repeated as desired, with other objects or variables.

The user can freely make changes to the values set previously. Objects, laws
and relations can also be removed by selecting them and clicking a Remove
button. The time increment (the duration one simulation step represents) can
also be changed. It affects simulation precision and speed.

Once the user is ready to launch simulation, Simulate may be clicked. Timepark
internally verified that the system the user has defined is ok. If there is a
problem, it is pointed out to the user. Otherwise, simulation begins. Time
starts increasing (shown at the screen’s bottom right), and the system’s objects
sizes and positions may begin to change. Besides seeing real-time qualitative
changes in the system’s 3-d visualization, the Current Objects table shows the
variable’s quantitative values.

If something interesting has just happened, the user can pause the simula-
tion run, scroll back, and play back what was calculated. Simulation can then
be resumed.

If the user is unhappy with simulation results, they can be reset by clicking
the Reset button. Simulation can be started again using the same conditions, af-
ter making minor modifications by changing initial values or time increment,
or after major changes involving addition or removal of objects, laws and rela-
tions.

Once the user is satisfied with the simulation run, the File menu has an “Ex-
port Time-series Data” item which permits data exporting to a tab-delimited
text-file. It can be read into any other program such as Microsoft Excel for cre-
ating graphs.

The system’s state can be saved to file at any time to be loaded back later
(on the same computer or not).

When a problem is detected, the user is alerted with detailed information
as to what went wrong. When an error is unexpected (and probably due to an
internal error), a single click is sufficient to send us a bug-report.

January 2004 Timepark Internship: Scientific Report 13

5 DISCUSSION

Availability
Timepark’s distribution policy is not yet determined. A public preview release
will be available shortly (by the end of March, 2004).

. .
5 Discussion

The aim of my work was not scientific discovery but to develop a tool.
Thus the work and choices presented here are primarily of technical nature.
They are not based on a purely scientific evaluation of known or reported state-
ments which could could be referred to in peer-reviewed articles in prestigious
journals. Rather, the choices were made from a pragmatic software engineer’s
viewpoint, meant to solve a problem that we have identified: creating a mod-
eling environment that would be simple to use.
At first, I wanted this discussion to be structured in two main parts: one discus-
sion for each result. However, the discussed issues are often transversal, so a
different structure was chosen. I begin by speaking about the limitations linked
to the modeling concept we have chosen. After giving reasons for dividing the
work into two main parts, I first focus on issues we had with the framework
and in particular mention ways its precision could be improved. Subsequently,
I will turn to Timepark and discuss implementation choices then features and
shortcomings. Finally, I give ideas for promoting Timepark’s use in the real
world.

Modeling concept
The chosen concept permits object-oriented modeling. These objects have vari-
ables. Their variation is governed directly or indirectly through time-dependent
functions or integration of time-dependent functions. Control-statements can
be used to choose between different functions.

From a mathematical viewpoint, the concept we have chosen permits mod-
eling of a large number of dynamic systems based on ordinary differential
equations (ODEs). Thus many known physical and biological models can be
implemented. However, the concept is inappropriate for a very large range
of models (statistical, neural-network based, matrix-based just to name a few),
but it was not our aim to make a universal modeling architechture.
Our aim was to create an architecture sufficient for modeling most systems
seen in science classes at high-school or early university level.
The significance of our modeling concept comes from the fact that the used
variables are necessarily linked to objects: instead of being just abstract place-
holders, the user is required to give them meaning (through names). This is
reinforced when a graphical visualization is used, such as the 3d-visualization
possibility we have supplied.

Additional flexibility will be provided to Timepark users by giving them
the opportunity of importing data: the time series import feature should per-
mit the user to link external data to object variables. It could then be used for
visualization on its own, or as a basis for simulation and visualization when
combined with our ODE-based math.

January 2004 Timepark Internship: Scientific Report 14

5 DISCUSSION

The use of control-statements is possible for users of our framework al-
though it was not yet implemented in Timepark as of this writing. We believe
that this opens the door to many modeling possibilities. One of these is colli-
sion detection and management. Another could be a system in which interac-
tion between two objects is due to different forces whose intensity depend on
the distance separating the objects. Different cases can then be made, some of
which could also be used to make processor load lighter. We envision using
control-statements to trigger more complex actions, such as object creation and
destruction. For example: if two hydrogen atoms meet under certain condi-
tions, they could fuse and be replaced by a H2 molecule. Control-statments
could also be used for creating simple multi-agent systems.

An important element missing from the implemented tools is stochasticity.
By definition, a model is an approximation of reality. Thus it is inherently in-
correct. This may be due to the inherent randomness of the world, imperfect or
incomplete knowledge of things that should be known, or errors made while
establishing the model. These uncertainties can sometimes be at least partially
compensated by introducing random noise into the model. One can consider
that it plays the role of existing parameters missing from the model (see for
example [BBL+01]. This is the case for Brownian movement: an explanation
for some of an atom’s basic movements are unknown, so they are considered
random. Whatever the reason, stochastic models are often better at capturing
real-world behavior than deterministic ones [SYSY02].
Adding standard stochasticity generators is on our framework’s to-do list.

Cross-platform development and distribution
Work described here was structured in two parts: developing a cross-platform
framework and developing a platform-specific user interface. We had several
reasons for doing this, the main being our desire to choose the tools best-
adapted for each problem. Creating a cross-platform user interface would
have limited our flexibility in choosing a user-interface toolkit and thus in
creating an interface. On top of that, different platforms have different user-
interface metaphors their users are accustomed to. Users often feel uncomfort-
able using graphical interfaces that were developed with a different platform
in mind[Jeg].

Framework implementation
While developing the framework, pain was taken to open it to a wide range of
possible architectures. This is visible at several levels. First of all, we chose de-
velopment libraries and tools which are known to work in many environments
and are actively used in large computing projects. This is the case for Xerces,
OpenGL, libstdc++, Flex++/Yacc as well as the compiler (GCC).
On a second level, use of a published XML-Schema can permit anyone to create
and edit the system definition files our framework uses natively. The possibil-
ity of exporting data obtained through simulation permits post-processing in
many other applications.
Finally, our framework is open because we distribute it under the Lesser Gnu
Public License (LGPL). This means that anybody may access its source code,
and use it as they wish, providing the changes made are contributed back to the
community by redistributing the modified framework under the same LGPL
license. Thus, anyone can modify or verify parts of our code. Obviously, con-
tributions and feedback are most welcome!

January 2004 Timepark Internship: Scientific Report 15

5 DISCUSSION

Compiler issues

Despite the fact that the tools we chose to use are relatively well established,
we encountered issues with some of them. Using the mathematical expression
parser generated by the pair of code generators Flex++/Yacc, requires includ-
ing an older header-file, FlexLexer.h. This file includes others from an older
C include hierarchy. The resulting namespace conflicts prevented compilation
with GCC 3 or newer. Using GCC 2.95.2 required us to use an older version of
the Xerces XML-library (2.1 instead of 2.3), but then all issues were resolved.
Being able to use a more recent version of GCC (3 or later) would have been
nice, since many interesting changes were made, one of the more visible being
optimization for faster code execution. From a developer’s point of view, many
other improvements in newer GCC compilers could have eased the develop-
ment process by accelerating compilation, linking and debugging.

Room for improvement

Additional features, such as further expanding the modeling concept by adding
support for stochasticity (described above) still need to be implemented. Other
shortcomings exist, such as:

• there is no support for derivation of one variable relatively to another
(any variable including time);

• direct importing of time-series data is currently not possible;

• there is no support for importing 3-d object files that are not in the Wave-
front .OBJ format.

Simulation speed could be increased by optimizing the algorithm, and by op-
timizing for certain hardware features (multiple processors, specific processor
instructions...). Depending on the realm in which the framework is used, quan-
titative precision may or may not be an issue.

Improving integration: The integral-approximation method currently used
for simulation is known as the rectangle-approximation. It is well known that
this approximation is rough when compared to other simple methods such as
the Trapezoidal Integration Method or the Simpson Method [GJ96]. Iterative
integration schemes such as the Runge-Kutta method can give much higher
precision (RK4 has an error which is significantly smaller than (integrationinterval)4,
[Wik03]).
Implementing the trapezoidal integration method would be relatively straight-
forward and significantly reduce error.
Integration precision can also be improved by the user on case-by-case by mak-
ing the time interval, ∆T , smaller: Fitting the form of a curve with rectangles
is easier when using a larger number of rectangles.

Improving number representation: Another issue is that of representing
numbers on computers. As with any enumeration system, we are limited:
We cannot represent all possible numbers, there are just too many of them
[Sto96]. On computers, numbers are represented using bits, binary numbers
that are either 1 or 0. Given any fixed number of binary numbers, most cal-
culations with real numbers will produce quantities that cannot be exactly
represented using that many binary numbers. A surprisingly simple exam-
ple is the real number 0.1: In standard floating-point base 2 representation
using 32 bits, it cannot be represented exactly, but it is approximated with
1.10011001100110011001101 × 2−4 [Sun91]. Likewise, due to roundoff errors,
the associative laws of algebra do not necessarily hold true for floating-point
numbers: The expression (x+y)+z has a totally different answer than x+(y+z)

January 2004 Timepark Internship: Scientific Report 16

5 DISCUSSION

when x = 1030, y = −1030 and z = 1 (it is 1 in the former case, 0 in the latter).

A partial remedy can be found. Different high-precision math libraries are
available, such as MAPM [Rin01] or apfloat. Using one of these or developing
our own custom fixed-point mathematics implementation for representing real
numbers would permit us to strongly reduce the error (given that computer
memory is finite, the problem cannot be completely eliminated). However,
one must keep in mind that higher precision would have the undesired effect
of slowing down every calculation. For example, a standard addition of two
numbers requires one step. Doing the same addition on the same computer
with twofold improved precision usually requires four steps (this is the case
when adding two numbers stored over 64 bits each on a 32 bit processor).

I believe that precision would only be an issue for certain uses. Where the
visual aspect prevails, qualitative accuracy is sufficient and should be attained
in most cases as long as the numbers involved are not near the limits of the
floating-point representation used. For scientific use, finer control is definitely
needed; a high-precision math library should be used. Precision could then be
set on a case by case basis as desired, keeping in mind that higher precision
slows things down. Rigorous scientific validation would then be required; the
mathematical validation presented on page 9 having little scientific value.

End-user Application
We wanted to give our end-user application the best user-experience possi-
ble: our aim is to make modeling intuitive. We want the user to see the com-
puter not a hurdle that must be overcome, but as a helpful and fun-to-use
tool. Although APIs for developing cross-platform user-interfaces are plentiful
(such as wxWindows, QT, Tcl/TK and Glut derivatives...), we believe the best
user-experience can be obtained using Apple’s Cocoa framework. This mature
object-oriented framework was born more than fifteen years ago [Sin04] and
makes providing an elegant user-interface relatively fast and straightforward.
Most notably, the relatively strict Apple Human Interface Guidlines are easily
respected; so the user feels at home right away.

Features

As stated before, the end-user application is still in development. Before sev-
eral additional key features are implemented, it will not be fit for day to day
use. What follows is a list of missing features, and, in certain cases, possible
but un-intuitive workarounds that require the user to adapt to the computer:

• The interface for entering mathematical expressions is not very user-friendly
(accessing certain functions (such as

√
x or xy and values of object’s vari-

ables) currently requires knowledge of specific syntax. We plan on mak-
ing this easier by letting the user visually select functions (through a
palette or pop-up menus). Additionally, we would like variable refer-
ences to be highlighted when displayed inside mathematical expressions.

• The class hierarchy is not implemented (See page 7). Only “physical”
variables are defined (3 positional, 3 rotational and one controlling size).
This makes representing mass, electrical charge, or population count dif-
ficult. As a workaround, one of the other variables can be used instead;
the user is thus currently limited to seven variables.

• Control structures are not available: only one function may be defined
per variable, and it is always used. This limits usability for complex mod-
els. For example, some pharmaco-kinetic models of medicine’s location

January 2004 Timepark Internship: Scientific Report 17

5 DISCUSSION

in a patient’s body require administration of multiple doses of medicine.
Until control-structures are implemented, they can still be administrated
“manually”, by pausing simulation, increasing the quantity of medicine
present in the first compartment and resuming simulation.

• The initial time frame cannot be set (simulation necessarily starts at T =
0). This can be overcome once again by modifying values while the sim-
ulation run is temporarily paused.

• Using Timepark for visually stunning presentations would require full-
screen visualization and visualization export facilities. The currently dis-
played area could be recorded using third-party continuous screen-capture
utilities such as Ambrosia Software’s Snapz Pro8.

Real world use

The primary goal of Timepark is to be used in schools. Use for educational pur-
poses could be promoted by including ready-made experiment templates. A
given “experiment template” would feature a defined system, ready for simu-
lation (much like the Wizard concept used in Microsoft Office). The user could
be guided to vary certain parameters so as to understand a specific concept.
Educational tools like this exist, but they are usually specific to one problem or
a small set of problems, requiring the user to adapt to a different user-interface
for each experiment. With Timepark, the same tool could be used for different
simulated experiments in physics, chemistry as well as biology. The power of
setting up the experiment is put into the hands of the teacher, letting him or
her adapt the experiment to his or her course and not the other way around.
This could be implemented at the framework’s level in an object-oriented cross-
platform scripting language such as Ruby9.

Let me illustrate this with a concrete example: an experiment template for
launching a satellite into orbit around earth. Upon opening this template, a
presentation window could appear, with text and eventually graphics describ-
ing the experiment. A second window could list parameters that might in-
fluence the satellite’s trajectory (acceleration, how long to accelerate...), and
prompt the user to enter values for these parameters. Simulation could then be
launched and shown right away, without the user having to use the standard
Timepark interface.

Another feature many could find interesting is displaying an object’s tra-
jectory. Thus at the end of simulation, one would end up with a dashed-line,
each point representing a position the object has held from its initial to its final
position. Additional control should obviously be given, such as the time inter-
val between two displayed points, the time range for which points should be
shown and the option of activating and disabling trajectory display after sim-
ulation.
This would be particularly useful in an educational institution where children
could run their simulation on the computer and subsequently have a print-out
they can keep and that could be used for pencil-and-paper exercises (such as
verifying that

∑ ~F = m× ~a.

An innovative approach

Despite the aforementioned shortcomings in the current implementation, we
believe the idea behind Timepark is promising. Use of user-interface metaphors
such as drag-and-drop object creation and pop-up-menus to reduce typing
bring about a novel modeling experience. Also, what exists in the system is

January 2004 Timepark Internship: Scientific Report 18

NOTES

immediately visible and quantifiable on-screen, something that can require ef-
fort in text-based tools.
A solid user interface linked to Timepark’s expected versatility may make the
difference between Timepark and other modeling tools, that are either complex
or straightforward and limited to a specific model.

. .
6 Closing Remark

For the near future, development will be focused on our graphical mod-
eling environment, Timepark. Source code for the framework will be avail-
able shortly at 〈http://yannick.poulet.org/timepark/ 〉. We eagerly await
the feedback we will get upon releasing Timepark to the general public. The
amount, quality and diversity of such feedback is unpredictable. Nevertheless,
I am sure that it will provide us with novel ideas and solutions.

. .

Notes

1#poulet developers include 〈http://www.inferiis.com/ 〉, 〈http://www.

macanalysis.com/ 〉, 〈http://www.pommsoft.com/ 〉, 〈http://www.rhapsodyk.

net/ 〉

2Some software used in physics classes in France: 〈http://perso.wanadoo.

fr/saintgregoire/scphys/logiciel.htm 〉

3〈http://www.perforce.com/jam/jam.html 〉

4〈http://sources.redhat.com/gdb/ 〉

5〈http://www.cvshome.org/ 〉

6〈http://www.doxygen.net/ 〉

7〈http://www.latex-project.org/ 〉

8〈http://www.ambrosiasw.com/utilities/snapzprox/ 〉

9〈http://www.ruby-lang.org/en/ 〉

January 2004 Timepark Internship: Scientific Report 19

REFERENCES

. .
References

[BBL+01] F. Beck, B. Blasius, U. Lüttge, R. Neff, and U. Rascher. Stochastic
noise interferes coherently with a model biological clock and pro-
duces specfic dynamic behaviour. The Royal Society Proceedings: Bio-
logical Science, 268(1473):1307–1313, June 2001.

[GJ96] D. Guinin and B. Joppin. Précis de Mathématiques: Analyse-Géométrie.
Prépas MPSI 1ère année, chapter Intégration sur un ségment, pages
245–250. Bréal, 1996.

[Jeg] Mark Steven Jeghers. Cross-platform toolkits: Potential problems in
gui development.

[Rin01] Micheal C. Ring. Mapm, a portable arbitrary precision math library
in c. C/C++ Users Journal, November 2001.

[Sha97] Alexei Sharov. Quantitative population ecology: Lotka-volterra
model on-line lecture, 1997.

[Sin04] Amit Singh. What is mac os x?, 2004.

[Sto96] John David Stone. Fundamentals of computer science: Ieee floating-
point representations of real numbers, 1996.

[Sun91] Sun Microsystems. What every scientist should know about
floating-point arithmetic. Computing Surveys, March 1991.

[SYSY02] Srivastava, You, Summers, and Yin. Stochastic vs. deterministic
modeling of intracellular viral kinetics. Journal of Theoretical Biology,
2002.

[Wik03] Wikipedia. Runge-kutta methods, 2003.

[Wor97] WordNet. WordNet 1.6. Princeton University, 1997.

January 2004 Timepark Internship: Scientific Report 20

